
COMPUTER ANIMATION AND VIRTUAL WORLDS

Comp. Anim. Virtual Worlds 2005; 16: 519–529
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cav.79
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Animating Geometrical Models

Mesh decomposition using motion
information from animation sequences

By Tong-Yee Lee*, Ping-Hsien Lin, Shaur-Uei Yan and Chun-Hao Lin
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

In computer graphics, mesh decomposition is a fundamental problem and it can benefit many

applications. In this paper, we propose a novel mesh decomposition algorithm using motion

information derived from a given animation sequence. The proposed algorithm first use

principal component analysis (PCA) to construct a compact representation of a given

animation sequence. Next, from this representation, we derive several motion parameters

including motion complexity and similarity. Finally, we decompose a given mesh into sub-

meshes using derived motion information and subdivide the triangles along the cutting paths

for the smoother borders between the mesh parts. Our experimental results show that this

new decomposition scheme can bring the benefit of good compression ratios on animation

sequences. Copyright # 2005 John Wiley & Sons, Ltd.

KEY WORDS: mesh decomposition; PCA; motion complexity; motion similarity; compression

Introduction

Overview

Mesh decomposition or segmentation is an important

problem in computer graphics. Good mesh decomposi-

tion schemes can benefit many applications. Decompo-

sition of a given polygonal mesh partitions the mesh

into connected subsets of meshes. According to the

types of the partitioned subsets, Shamir16 classifies

mesh segmentation techniques into two different cate-

gories: patch-type and part-type methods.

Generally, the patch-type methods always generate

disk-like patches and the part-type methods attempt

to partition the mesh into ‘meaningful’ components.

Patch-type methods are usually used for texture map-

ping,1 surface parameterization,2 and morphing appli-

cations3–7 because geometric property such as planarity

and convexity can be well-maintained in the planner

patches. In many applications, the requirement of low-

distortion after 3D-to-2D surface parameterizations is

crucial and therefore the patch-type approach is a

naturally better choice than the part-type approach.

On the other hand, the part-type approach is more

suitable for applications that need to explicitly identify

some sub-parts of a model. For example, in shape

matching8 and modeling by parts,9 it is better to

decompose the whole object into some feature-salient

sub-parts to assist in recognition of object parts or to

facilitate the modification of models.

The mesh decomposition can be executed in either

a fully automatic or a semi-automatic manner. In

this paper, the proposed method is a fully automatic

decomposition algorithm and it generates both patch-

type and part-type sub-meshes. The major contribution

of this paper is a novel mesh decomposition using

motion information from a given animation sequence.

To the best of our knowledge, this paper might be the

first to use the motion information to decompose a mesh

model. Most previous work uses the information de-

rived from a static model only to perform mesh decom-

position. In this paper, the decomposition method based

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd.

*Correspondence to: Tong-Yee Lee, Computer Graphics
Group/Visual System Laboratory, Department of Computer
Science and Information Engineering, National Cheng Kung
University, Taiwan. E-mail: tonylee@mail.ncku.edu.tw

Contract/grant sponsor: National Science Council, Taiwan;
contract/grant numbers: NSC-93-2213-E-006-026; NSC-93-
2213-E-006-060; NSC 94-2213-E-006-005.



on motion information can be potentially beneficial for

applications such as compression of animation se-

quences or generate better level-of-details of models

with dynamic motions. We apply the proposed method

to the compression of animation sequences. Our experi-

mental results show that this new decomposition can

achieve good compression ratios of animation se-

quences.

RelatedWork

In the past, many related schemes have been proposed

to decompose meshes. Gregory et al.3 and Zockler et al.4

manually decompose the meshes for their metamorpho-

sis applications. This partitioning task can be very

tedious and time-consuming. To minimize the need

for this manual effort, Shlafman et al.5 present a k-means

based clustering algorithm to partition given models

into several meaningful and compatible components.

Garland et al.10 propose a face clustering based on the

planarity metric to decompose meshes. The created

face hierarchy is very useful in many applications

such as collision detection and surface simplification.

Sander et al.2 use iterative clustering scheme to decom-

pose a given mesh into several charts for geometry

image creation. Their clustering metrics include geo-

metric distance between neighboring faces, and differ-

ence between face normal and the chart normal.

Mangan and Whitaker11 generalize the watershed

method to segment meshes by using either Gaussian

curvature or the norm of the covariance of adjacent

face normals as the height field at each vertex.

Similarly, Razdan and Bae12 describe a hybrid approach

based on curvature information from the meshes for

region partitions. Katz and Tal13 propose a fuzzy clus-

tering scheme to hierarchically decompose meshes and

the final cuts on the region boundaries can be further

refined using some minima rule. This method benefits

in control-skeleton extraction of meshes for animation

and deformation applications. In some applications

such as mesh editing, it is necessary to provide some

intelligent tools to assist users in manually scissoring

meshes. Lee et al.14 and Funkhouser et al.9 support

intelligent tools and allow easy manipulation to intui-

tively scissor meshes. For mesh compression purpose,

Karni and Gotsman15 partition meshes into sub-meshes

to reduce computation cost in mesh compression using

spectral analysis. Finally, for more related work, please

refer to Shamir’s work16 excellent survey on mesh

decomposition.

Animation Parameterization
Using Principal Components

Alexa and Muller17 apply principal components analy-

sis (PCA) to an animation sequence and then utilize a

small number of principal animation components to

reconstruct the whole animation sequence. This PCA-

based representation decouples the animation and geo-

metry information by factorizing an affine mapping

TðtiÞ for ith key-frame Bi with the first frame, and using

Equation (1) to reconstruct the frame at time t:

AðtÞ ¼ T�1ðtÞ �
X
k

âakðtÞ � B̂Bk ð1Þ

where âakðtÞs are the importance factors for the principal

components and B̂Bks are the principal component bases.

In Equation (1), B̂B0 represents the main structure of the

geometry and B̂B1, B̂B2, B̂B3, and so on represent all the

geometric deviations of B̂B0 with decreasing importance.

This technique supports progressive animation com-

pression with high compression ratios.

MotionAnalysis

The representation of principal components can decou-

ple the animation from the underlying geometry. In this

section, we use this representation to define some fac-

tors for evaluating the motion characteristic of a vertex

or among the neighboring vertices. In this paper, the

motion information on a vertex is selected as the basis

for mesh partitions. Therefore, we use a vertex-based

symbolism to rewrite the representation of principal

components as follows. Assume the animation has M

key-frames, the model has N vertices, and the user

chooses the first L principal components to reconstruct

the animation sequence. For the information of a vertex i

in the kth frame, we rewrite its principal components

representation using the first L principal components as:

v̂vik ¼ T�1
k

XL
j¼1

hV0
k � V0;Ejieij

0
@

1
Aþ v0i

0
@

1
A ð2Þ

where Tk is the affine transformation that maps the kth

frame Vk to the first frame, V0
k is the transformed kth

key-frame, V0 is the transformed average shape, Ej is the

jth eigenvector, eij is the information of vertex i in Ej, and

v0i is the transformed average information of vertex i.

T.-Y. LEE ET AL.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 520 Comp. Anim. Virtual Worlds 2005; 16: 519–529



Note that the indices i, j, k do not always mean the same

as in Equation (2). They should be read carefully in the

following content.

MotionComplexity

The representation of animations using principal com-

ponents treats a whole object as the subject for PCA.

Therefore, these principal component bases are not

individualized for each vertex. This representation re-

constructs all the vertices by using the same number of

bases. However, themotion characteristics of vertices on

an object may be quite different. Among the first L user-

chosen principal component bases, there may be some

bases that are unnecessary for certain vertices. We

attempt to reduce this redundancy. First, we define

the motion complexity ci as the number of necessary

eigenvectors for properly describing the motion of ver-

tex i. We use Equation (3) to judge whether the jth base

is needed for vertex i.

max
M

k¼1
ðhV0

k � V0;EjiÞ �min
M

k¼1
ðhV0

k � V0;EjiÞ
� �

� keijk ð3Þ

where k � k means vector norm. If the value of Equation

(3) is below a user-specified threshold �c, the jth base is

not needed. Moreover, since the eigen-analysis is per-

formed on the whole object, the information of a vertex

in different eigenvectors may not be orthogonal to each

other. However, they may be highly correlated. When

computing the motion complexity, we should treat

Figure 1. (a) An animation sequence from a given polygonal mesh and (b) different views of decomposed sub-meshes for a given

model using the proposed method.

Figure 2. (a) Motion complexity visualization. A vertex with the higher gray-value indicates the lower motion complexity on this

vertex. (b) Motion similarity visualization. An edge with the higher gray-value implies the higher motion similarity with two

adjacent vertices sharing this edge.

MOTION INFORMATION FROM ANIMATION SEQUENCES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 521 Comp. Anim. Virtual Worlds 2005; 16: 519–529



highly correlated eigen-information as the same or

similar contribution by only one base. We use a thresh-

old �c and the absolute correlation defined in Equation

(4) to do this judgment for the jth and kth bases.

j heij; eiki
keijkkeikk j ð4Þ

where j � jmeans absolute value. If the value of Equation

(4) is above �c, we decrease motion complexity ci by one.

In this manner, we refine the value of motion complex-

ity. After the motion complexity on each vertex is

defined, we smooth out the value ci of each vertex by

averaging it with those of their one-ring neighbors.

Figure 2(a) visualizes the motion complexity of a run-

ning horse (see Figure 6(a)). We can see that the horse’s

head has lower motion complexity than those of four

feet.

Motion Similarity

Next, to judge the motion consistency between neigh-

boring vertices, we define another parameter called

motion similarity sij for two neighboring vertices i and

j as:

sij ¼ 1

L

XL
k¼1

heij; eiki
keijkkeikk �

4ðci þ "Þðcj þ "Þ
ðci þ cj þ 2"Þ2 ð5Þ

In Equation (5), the first term evaluates the correlation

of the information of vertex i and vertex j in the L

eigenvectors. The second term prefers the neighboring

vertices with less discrepancy in their motion complex-

ity, ci and cj. Note that we add a small positive value " in

Equation (5). It is not only for preventing from division

by zero, but also keeps the correct similarity for vertices

with a zero motion complexity vertex. Figure 2(b)

visualizes the motion similarity of the running horse.

We can see those edges near the knees are of lower

motion similarity. This phenomenon agrees with our

expectations for the running horse in Figure 6(a).

MeshDecompositionUsing
MotionAnalysis

Most mesh decomposition methods are based on the

analysis of geometric property. However, we observe

that, in an animation sequence, the vertices on a patch of

a properly decomposed model tend to move more

consistently than the vertices on other patches. More-

over, in this situation, the features of the motion infor-

mation in animations are usually more obvious than

those of geometry.

Decompositionby RegionGrowing

After motion analysis, we simply use a local-greedy

region growing approach to group the vertices. The

criterion that determines if a vertex can be added to

an existing group is motion similarity obtained in

Equation (5). The algorithm starts with a seed and grows

a sub-mesh (or patch) incrementally as follows. When

the region growing processes a new vertex, we check

whether its motion similarity with its neighbors that

were already grouped into the current patch is higher

than a threshold. If the answer is yes, this vertex will be

included. After the region growing has been finished,

the decomposed model may look fragmentary (i.e.,

over-segmented) due to small regions such as isolated

vertices/edges/faces that cannot be grouped to any

neighboring group. Then, we perform a merging pro-

cedure to group it into the neighboring patches accord-

ing to their motion similarity with less restricted

tolerance. In addition, if the size of an isolated element

is too small, i.e., below a threshold, this isolated element

is merged into the nearest group to reduce over-

segmentation. Figure 3 shows the decomposition of

the running horse after region growing. Since the above

procedure is a vertex-based method, the decomposed

Figure 3. The decomposition of the running horse after region

growing and some gaps exist among partitioned patches.

T.-Y. LEE ET AL.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 522 Comp. Anim. Virtual Worlds 2005; 16: 519–529



result may have no hard boundary,12 i.e., a triangle can

not belong to any one neighboring patch. This is due to

the three vertices of this isolated triangle can be part of

three different patches. In Figure 3, the gaps between

neighboring patches illustrate the ‘no-hard-boundary’

problem. Next, we will find a smooth boundary for each

pair of neighboring patches.

Boundary Smoothing

First, we find out all the corner triangles whose vertices

connect three different patches on the model (see the

darkest triangles in Figure 4(a)). Then, we add a new

vertex at the centroid of each corner triangle and re-

triangluate it as shown in Figure 4(b).

We would like to find a smooth border between

the centroids of two adjacent corner triangles. For this

purpose, we first find the triangle strips between two

adjacent corner triangles. Then, we grow the area along

the two sides of the triangle strips by extra few layers

constrained by a distance threshold. See an example in

the region enclosed by the thick black lines in Figure 5(a).

Next, this enclosed region is then flattened onto a

2D circle using the L2 stretch criterion,18 as shown in

Figure 5(b). Finally, we regularly resample this 2D circle

(see Figure 5(c)) and use barycentric coordinate to map

these samples back to the 3D model. We compute the

normal for each sample, and find a smooth boundary

path P passing through these samples by a minimiza-

tion procedure guided by Equation (6).

min
X
P

jvi � vjj
ð1þ ni � njÞ

 !
ð6Þ

Figure 4. (a) The boundary gaps form a triangle strip network. (b) Re-triangulation of a corner triangle. This square area is the

enlargement of the area enclosed by the red lines in (a). (c) The boundary gaps do not contain corner triangles.

Figure 5. (a) The concerned region for determining the

boundary of two adjacent corner triangles after growing extra

few layers. (b) The concerned region in (a) is mapped to a 2D

circle. (c) The final boundary path on 2D circle. (d) The final

boundary path on 3D model.

MOTION INFORMATION FROM ANIMATION SEQUENCES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 523 Comp. Anim. Virtual Worlds 2005; 16: 519–529



where vi and vj are the positions of two neighboring

sample i and j on P, and ni and nj are their normals.

Figure 5(c) and (d) show the final boundary path

between centroids of two adjacent corner triangles on

2D circle and on 3D model, respectively.

In cases, as shown in Figure 4(c), the boundary gaps

do not contain corner triangles. In this situation, the

boundary gap itself is a loop and each triangle in this

gap is shared by two regions. This loop automatically

partitions the mesh into two parts. Therefore, The

proposed scheme can create two kinds of sub-meshes:

patch-type and part-type regions according to Shamir’s

work16 classification. For the smoother borders, we also

apply the similar smoothing procedure described above

to this loop.

Results andApplications

Experimental Results

In this section, we demonstrate the usefulness of the

proposed algorithm in the compression of animation

sequences. The first example in Figure 1 is a part of

Wally animation from Discrete Character Studio,

300 frames of the Wally’s geometry that consists of

8880 vertices. This animation sequence requires an

uncompressed size of 300 frames� 8880 vertices� 6

dimensions (vertex and normal)� 4 bytes¼ 63 936 000

bytes. In the accompanying video of this animation, we

can observe the following motion features: (1) left hand

is swinging, (2) feet and right hand are moving line-

arly, (3) head and tail are turning left and right, and

(4) wings are swinging upwards and downwards. As a

result in Figure 1(b), most decomposed regions follow

the observed behaviors in this sequence. The second

example in Figure 6(a) is a part of running horse

animation, 96 frames of the horse’s geometry that

consists of 2982 vertices. This animation sequence

requires an uncompressed size of 6 870 528 bytes. In

this animation sequence, we also observe the following

motion features: (1) head is moving gently, (2) tail is

swinging upwards and downwards, and (3) four feet

are running and knees are bending. Figure 6(a) (right)

demonstrates the decomposed results rendered with

two different views. In this example, the horse body is

partitioned into three regions illustrated by yellow,

orange, and white colors. This result is due to the

orange region is near to four feet that have more

dynamic motion.

Figure 6. The decomposition examples using the proposed method. Left: A part of animation sequence. Right: Two different views

of decomposed results.

T.-Y. LEE ET AL.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 524 Comp. Anim. Virtual Worlds 2005; 16: 519–529



Table 1 shows experimental configurations and com-

pression ratios for these above two examples. In both

examples, we use 20 PCA bases to reconstruct the

animation sequence and we also show their PCA recon-

structed errors. The horse and Wally are decomposed

into 12 parts and 19 parts, respectively. After decom-

position, we apply the second pass PCA to each indivi-

dual part and then to reconstruct each part. As a result,

on the average, we only need 10.1 and 7.0 PCA bases for

each part in horse and Wally cases, respectively. Experi-

ments show that we can achieve less PCA errors as well

as the higher compression ratios. Additionally, after the

second pass PCA, we also evaluate the reconstruction

error using distortion measure19 defined below.

distortion ¼ 100� kA� ~AAk
kA�AverageðAÞk ð7Þ

Figure 7. A flowchart of the animation compression scenario using two-pass principal component analysis (PCA).

model
size (byte) method size (byte)

L
(patches) PCA error

compression
ratio

distortion
%

PCA 4,499,520 20 0.00073 14.20952 0.21707

63,963,000
2nd-PCA 2,211,888 7.0 (avg.)

(19)
0.000105

(avg.) 28.90562 0.08311

PCA 1,510,608 20 0.03069 4.54819 0.86210

6,870,528
2nd-PCA 882,168 10.1 (avg.)

(12)
0.00915
(avg.)

7.78823 0.59927

Table1. Experimentalconf|gurations andcompressionratios.

MOTION INFORMATION FROM ANIMATION SEQUENCES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 525 Comp. Anim. Virtual Worlds 2005; 16: 519–529



where A represents vertex and the normal information

in the original animation sequence, ~AA is reconstructed

counterpart using PCA and Average(A) is the average

counterpart in the original sequence. Both cases show

less distortion measurement once we apply 2nd-PCA to

reconstruct animation sequences. Alexa and Muller17

propose a single pass PCA approach to compress an

animation sequence. Based on our results, we have the

following claim. Once we decompose models using 1st

PCA motion information and then apply 2nd PCA to

each individual part, we can potentially achieve better

compression ratios than those of a single pass or called

1st PCA in this paper to the animation sequence.

In Figure 6(b) and (c) show a part of another two

interesting animation sequences called Dr. X (300

frames, 4935 vertices and 20 components) and Chicken

Crossing (400 frames, 3030 vertices, and 41 compo-

nents). In these two examples, the original geometries

were already decomposed into distinct components as

they were created using animation software. Actually,

not all available animation models were originally cre-

ated as a single component such as horse and Wally.

Alexa and Muller17 apply a PCA to the whole geometry

of Chicken Crossing example and obtain a good com-

pression ratio. Instead, we apply a PCA to each distinct

component. In Table 2, as we expect, the compression

ratio can be improved as each component is individu-

ally processed by a PCA. Therefore, these better results

are still met with our claim. Moreover, we also attempt

to further decompose an individual component into

sub-components using the proposed algorithm if the

size of a component is larger than a threshold. For

example, the wings of the Chicken geometry are further

decomposed into two parts. Additionally, the neck is

separated from the body and claws are segmented from

feet in this Chicken Crossing example, as these compo-

nents have more dynamic motion. Then, we further

apply a PCA to these newly decomposed components.

We term these cases are under 3rd PCA execution in

contrast to the whole geometry executed by the 1st PCA

like Alexa and Muller17 work. Both 2nd and 3rd PCAs

approaches perform much better than the 1st PCA

approach. However, as indicated in Table 2, the 3rd

PCA approach only slightly improves compression ra-

tios over the 2nd PCA method. This performance

behavior is not surprising, because the animator decom-

posed models on purpose into several components for

the requirement of animation motions. Parts with simi-

lar motion characteristics tend to be grouped in the

same components. Therefore, the further PCA, i.e., 3rd

PCA, is not always required if the models were already

well partitioned.

Finally, for the page limit, we only show detailed

decomposition information for a running horse example

in Table 3. Twelve individual partitioned components

are illustrated and the number of PCA base for each

component and the reconstructed PCA errors are given.

Compression of Animation
Sequence andAnalysis

The flowchart of the proposed algorithm applied to the

compression of an animation sequence can be depicted

in Figure 7. In contrast to work,17 we term this compres-

sion approach as ‘animation compression using two-

pass principal component analysis (PCA)’. Note that, if

the mesh decomposition is only for the animation

compression, we can omit the boundary smoothing

step in the proposed method. Since the boundary

smoothing will generate some new vertices that would

decrease the compression ratio and a smoothing bound-

ary is not needed for compression purpose. The original,

uncompressed animation storage complexity is: NM,

where N is the number of vertices and M is the number

of key-frames. After using a single pass principal

model
size (byte) method size (byte)

L
(patches) PCA error

compression
ratio

distortion
%

PCA 12,082,440 100 0.99384 2.94080 2.64434

2nd-PCA 8,734,992 39.85 (avg.)
(20)

0.31035
(avg.)

4.06778 2.13774

35,532,000 3rd-PCA 6,823,335 36.44 (avg.)
(27)

0.10103
(avg.) 5.20742 2.08109

PCA 3,788,720 50 0.16669 7.67753 2.34897

2nd-PCA 2,432,104 17.00 (avg.)
(41)

0.04033
(avg.)

11.96001 0.95843

29,088,000 3rd-PCA 2,294,535 15.03 (avg.)
(53)

0.00982
(avg.)

12.67708 0.81056

Table 2. Experimentalconf|gurations andcompression ratios.

T.-Y. LEE ET AL.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 526 Comp. Anim. Virtual Worlds 2005; 16: 519–529



component representation like work,17 the storage com-

plexity reduces to: NK þMK þN, where K is the num-

ber of principal components needed to reconstruct the

animation, and usually K � N and K � M. For the

presented two-pass PCA approach, the storage com-

plexity is

XL
i

ni � ki þ ki �M

 !
þN;

X
i

ni ¼ N ð8Þ

whereL is the numberofdecomposed components,ni and

ki are the number of vertices in the ith component and the

number of PCAbases for the ith component. In the anima-

tionsequence, ifni is largeanditscorrespondingki is small,

i.e., less motion, the two-pass PCA approach can perform

muchbetter. Finally,weshouldnote thatweneed toblend

vertex information for display if a vertex is shared by

different decomposed components.

Conclusions and FutureWork

In this paper, we propose a novel mesh decomposition

algorithm using motion information from an anima-

tion sequence. Experiments are demonstrated to suc-

cessfully partition models into sub-meshes. Results fit

well motion characteristics inherent in a given anima-

tion sequence. It is evident that our mesh decomposi-

tion technique relies on proper animations. This means

if a joint is not swinging in the animation sequences, it

will not be segmented at or near this joint. But in our

test data, we found that our mesh decomposition

technique is not very sensitive to the animations. If a

joint has swinging slightly among the animation, it

will be decomposed properly near the joint. This

phenomenon is especially obvious in the Wally case:

the right hand and two feet of Wally only stretch and

swing slightly among the animation, but the decom-

position result is good, see Figure 1. The proposed

algorithm is, in particular, useful to handle models

with dynamic motions. For example, we apply the

proposed algorithm to the compression of animation

sequences. As a result, the compression ratios for

tested animation sequences are better than the method

using the single-pass PCA such as work.17 In future,

we plan to apply the proposed method to generate

LOD geometry of an animation sequence. In the LOD

application, the models are decomposed into sub-

meshes according to motion similarity. Then, we can

apply LOD simplification technique to each sub-mesh.

For example, in the Chicken Crossing example, once

each claw is segmented apart, when we individually

simplify each claw instead of the whole foot, the shape

of each claw can be maintained well in much simpler

manner using LOD simplification techniques. In this

paper, the major factor considered is motion informa-

tion in the proposed algorithm. In future, for better

decomposition, other geometric metrics such as cur-

vature or concavity and geodesic or angular distance

can be included, too. In addition, we also would like

to investigate better schemes to compress animation

sequences such as including linear prediction coding

(LPC) plus PCA like work.19 For colour images in this

paper, please see them at http://couger.csie.ncku.

edu.tw/~vr/CAV79/color_figures.htm.

ACKNOWLEDGEMENTS

The Chicken Crossing animation sequence is courtesy of

Dr. Andrew Glassner at Microsoft Research. The Wally and

Dr. X are courtesy of Discrete Character Studio.

Table 3. Furtherdecomposition information for a runninghorse example.

MOTION INFORMATION FROM ANIMATION SEQUENCES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 527 Comp. Anim. Virtual Worlds 2005; 16: 519–529



References

1. Levy B, Petitjean S, Ray N, Mallot J. Least squares con-
formal maps for auto-matic texture atlas generation.
In SIGGRAPH’02 Proceedings, 2002; pp. 362–371.

2. Sander P, Wood Z, Gortler S, Snyder J, Hoppe H. Multi-
chart geometry images. In Proceedings of Eurographics
Symposium on Geometry Processing, 2003; pp. 146–155.

3. Gregory A, State A, Lin M, Manocha D, Livingston M.
Interactive surface decomposition for polyhedral morph-
ing. The Visual Computer 1999; 15(9): 453–470.

4. Zockler M, Stalling D, Hedge H-C. Fast and intuitive gene-
ration of geometric shape transitions. The Visual Computer
2000; 16(5): 241–253.

5. Shlafman S, Tal A, Katz S. Metamorphosis of polyhedral
surfaces using decom-position. Eurographics’02 Proceedings
2002; 21(3): 219–228.

6. Lee T-Y, Huang P-H. Fast and intuitive metamorphosis of
3d polyhedral models using smcc mesh merging scheme.
IEEE Transactions on Visualization and Computer Graphics
2003; 9(1): 85–98.

7. Lin C-H, Lee T-Y. Metamorphosis of 3d polyhedral models
using progres-sive connectivity transformations. IEEE Trans-
actions on Visualization and Computer Graphics 2005; 11(1): 2–12.

8. Zuckerberger E, Tal A, Shlafman S. Polyhedral surface
decomposition with applications. Computer and Graphics
2002; 26(5): 733–743.

9. Funkhouser T, Kazhdan M, Shilane P, et al. Modeling by
example. SIGGRAPH’04 Proceedings, 2004; pp. 649–660.

10. Garland M, Willmott A, Heckbert P. Hierarchical face
clustering on polygonal surfaces. Proceedings of ACM
Symposium on Interactive 3D Graphics, 2001; pp. 49–58.

11. Mangan A, Whitaker R. Partitioning 3d surface meshes
using watershed segmen-tation. IEEE Transactions on
Visualization and Computer Graphics 1999; 5(4): 308–321.

12. Razdan A, BaeM. A hybrid approach to feature segmentation
of triangle meshes. Computer-Aided Design 2003; 35: 783–789.

13. Katz S, Tal A. Hierarchical mesh decomposition using
fuzzy clustering and cuts. In SIGGRAPH’03 Proceedings,
2003; pp. 954–961.

14. Lee Y, Lee S, Shamir A, Cohen-Or D, Seidel G-P. Intelligent
mesh scissoring using 3d snakes. In The Proceedings of
Pacific Conference on Computer Graphics and Applications,
2004; pp. 279–287.

15. Karni Z, Gotsman C. Spectral compression of mesh geome-
try. In SIGGRAPH’00 Proceedings, 2000; pp. 279–286.

16. Shamir A. A formation of boundarymesh segmentation. In
Proceedings of the second International Symposium on 3DPVT
(3D Data Processing, Visualization, and Trans-mission), 2004;
pp. 82–89.

17. Alexa M, Muller W. Representing animation by principal
components. In Euro-graphics’02, 2002; pp. 411–418.

18. Sander P, Snyder J, Gortler S, Hoppe H. Texture mapping
progressive meshes. SIGGRAPH’01 Proceedings, 2001;
pp. 409–416.

19. Karni Z, Gotsman C. Compression of soft-body animation
sequences. Computer and Graphics 2004; 28: 25–34.

Authors’biographies:

Tong-Yee Lee was born in Tainan county, Taiwan in
1966. He received his B.S. in Computer Engineering
from Tatung Institute of Technology in Taipei, Taiwan,
in 1988, his M.S. in Computer Engineering from
National Taiwan University in 1990, and his Ph.D.
in Computer Engineering from Washington State
University, Pullman, in May 1995. Now, he is a pro-
fessor in the Department of Computer Science and
Information Engineering at National Cheng-Kung
University in Tainan, Taiwan. He serves as a guest
associate editor for IEEE Transactions on Information
Technology in Biomedicine from 2000 to 2005. His
current research interests include computer graphics,
non-photorealistic rendering, image-based rendering,
visualization, virtual reality, surgical simulation,
distributed and collaborative virtual environment.
He leads a Computer Graphics Group/Visual System
Lab at National Cheng-Kung University (http://
couger.csie.ncku.edu.tw/~vr). He is a member of the
IEEE.

Ping-Hsien Lin received his B.S. degree in Mechanical
Engineering and his Ph.D. in Computer Engineering
from National Cheng-Kung University, Taiwan, in 1993
and 2004, respectively. He is currently an assistant
professor in the Department of Computer Science and
Information Engineering at National Changhua Univer-
sity of Education in Taiwan. His research interests
include computer graphics, computer vision, image-
based rendering.

T.-Y. LEE ET AL.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 528 Comp. Anim. Virtual Worlds 2005; 16: 519–529



Shaur-Uei Yan received his B.S. degree in Civil
Engineering from National Taiwan University, Taiwan,
in 2000. He is currently working toward his Ph.D. in
the Department of Computer Science and Information
Engineering, National Cheng-Kung University. His
research interests include computer graphics and mesh
parameterization.

Chun Hao Lin received his B.S. degree from his Depart-
ment of Computer Science, National Chengchi Univer-
sity, Taipei, Taiwan, in 2000, and his M.S. degree from the
Department of Computer Science and Information Engi-
neering, National Cheng-Kuang University, Tainan,
Taiwan, in 2004. And his research interests include com-
puter graphics, computer vision and image processing.

MOTION INFORMATION FROM ANIMATION SEQUENCES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 529 Comp. Anim. Virtual Worlds 2005; 16: 519–529




